

engineers | scientists | innovators

PFOS/PFOA, 1,4-Dioxane, Perchlorate, and Lead as Emerging Contaminants

PRESENTATION TO

Alliance of Hazardous Materials Professionals

Michael Hansen, BCES, CHMM Neal Durant, Ph.D.

5 October 2018

Discussion Topics

PFOS/PFOA

- 1,4-Dioxane
- Perchlorate

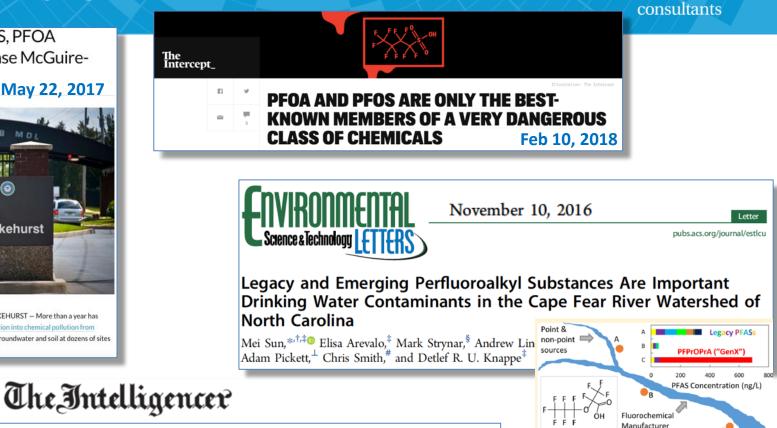
Lead

Headlines in the news

- Environmental occurrence
- Regulatory status
- Remediation practices
- □ Remediation challenges

Polyfluoroalkyl Substances (PFAS)

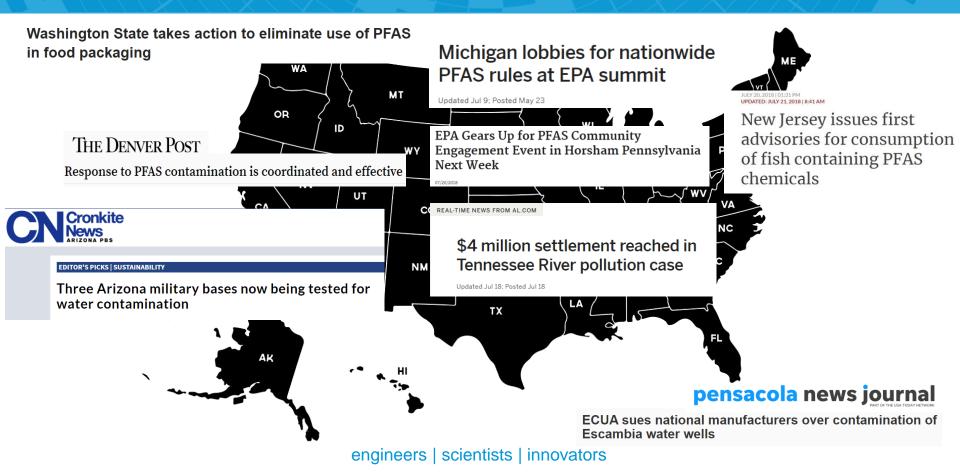
Perfluorooctane sulfonic acid (PFOS) C₈HF₁₇O₃S


PFAS Per- and Polyfluoroalkyl substances PFOA Perfluorooctonic Acid PFOS Perfluorooctane sulfonic acid

AFFF Aqueous film forming foam

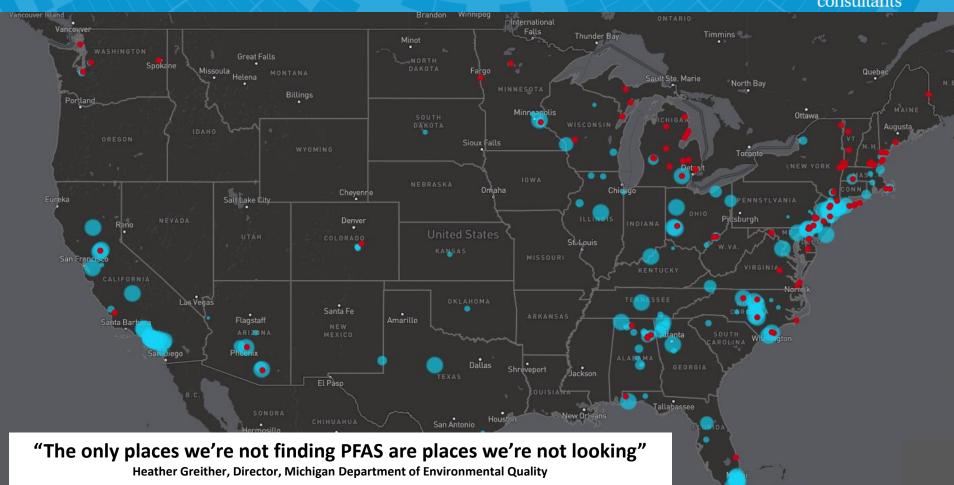
PFAS In the News

No end in sight for PFOS, PFOA investigation at Joint Base McGuire-Dix-Lakehurst May 22, 2017


PFPrOPrA

Geosyntec^o

CDC: Some in Horsham, Warrington, Warminster exposed to PFCs several times the safe level May 24, 2017


PFAS In the News

PFAS Extent of Sites


Geosyntec consultants

PFAS Extent of Sites

Hydrological units with detectable PFASs

Source: https://pubs.acs.org/doi/pdf/10.1021/acs.estlett.6b00260

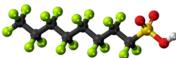
PFAS - Overview

Geosyntec[>]

No natural source

Thousands of chemicals

Thermally and chemically stable



Resist water, heat, and grease and reduce friction

Linked to cancer, immune and reproductive system toxicity

PFAS - Overview

Geosyntec[>]

Human made fluorinated surfactants
Hydrophobic/oleophilic "tail"
Hydrophilic group on end of chain
Hydrogen in carbon chain is replaced by fluorine
Range from 4 to 12 carbons

Stain and Moisture Resistant	Carpet and upholstery Sports clothing Military uniforms
Oil Resistant	Food wrappers, paper coatings Non-stick cookware
Surfactant	 Fire fighting foam (e.g., AFFF) Metal plating Shampoo Motor oil and enhanced oil recovery
	Non-stick cookware Fire fighting foam (e.g., AFFF)

Naming Convention

Abbreviation	Name	No. of Carbons	Functional/ Hydrophilic Group
PFBA	perfluorobutanoic acid	4	carboxyl
PFBS	perfluorobutanesulfonic acid	4	sulfonyl
PFPA	perfluoropentanoic acid	5	carboxyl
PFHxS	perfluorohexanesulfonic acid	6	sulfonyl
PFHxA	perfluorohexanoic acid	6	carboxyl
PFOA	perfluorooctanoic acid	8	carboxyl
PFOS	perfluorooctanesulfonic acid	8	sulfonyl
PFOSA	perfluorooctanesulfonamide	8	sulfonamide
PFNA	perfluorononanoic acid	9	carboxyl
PFDA	perfluorodecanoic acid	10	carboxyl
PFUdA	perfluoroundecanoic acid	10	carboxyl
PFDoa	perfluorododecanoic acid	12	carboxyl

PFAS - Overview

Aerospace

Automotive

Electronics

Healthcare

Leather

First responders

Biosolids -

Alternative energy

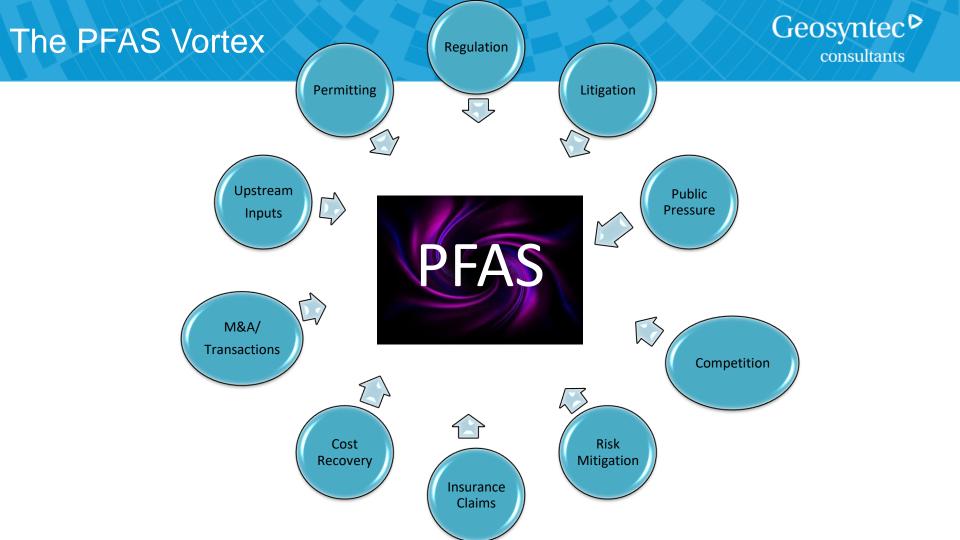
Aqueous film forming foams (AFFF) Mining – odor and dust control, enhanced recovery, biosolids for reclamation Military Oil and gas – enhanced recovery Paints, varnishes, sealants, waxes and polishes Paper products – food surfaces, Rite-in-the-Rain[®], Post-It[®] Building and construction – weather resistant coatings Personal care products Building fire suppression systems Performance chemicals – hydraulic fluids, fuels Pharmaceuticals Chemical manufacturing Photolithography Cosmetics, bug spray, sunscreen Plastics Fire fighting/training facilities Polymer manufacturing Resins Semiconductors Industrial surfactants Stain repellants Textiles Landfills – leachate, odor and dust control Wastewater treatment plants Weather resistant apparel and equipment Medical – implants, patches and grafts Metal plating and etching Wire manufacturing and coating

AFFFs

Geosyntec[>]

Place and Field, 2012

PFAS ¹	Development Time Period							
L'	1930s	1940s	1950s	1960s	1970s	1980s	1990s	2000s
PTFE	Invented	Non-Stick Coatings			Waterproof Fabrics			
PFOS		Initial Production	Stain & Water Resistant Products	Firefighting foam				U.S. Reduction of PFOS, PFOA, PFNA (and other select PFAS ²)
PFOA		Initial Production		rotective oatings				
PFNA					Initial Production	Architectural I	Resins	
Fluoro- telomers					Initial Production	J J J J		Predominant form of firefighting foam
Dominant Process ³		Electrochem	emical Fluorination (ECF) telomerization (shorter chain E					
Pre-Invention of Chemistry /			Initial Chemical Synthesis / ProductionCommercial Products Intro and Used		ntroduced			


Notes:

1. This table includes fluoropolymers, PFAAs, and fluorotelomers. PTFE (polytetrafluoroethylene) is a fluoropolymer. PFOS, PFOA, and PFNA (perfluorononanoic acid) are PFAAs.

2. Refer to Section 3.4.

3. The dominant manufacturing process is shown in the table; note, however, that ECF and fluorotelomerization have both been, and continue to be, used for the production of select PFAS.

 $\textbf{Source:} https://pfas-1.itrcweb.org/wp-content/uploads/2017/11/pfas_fact_sheet_history_and_use__11_13_17.pdf$

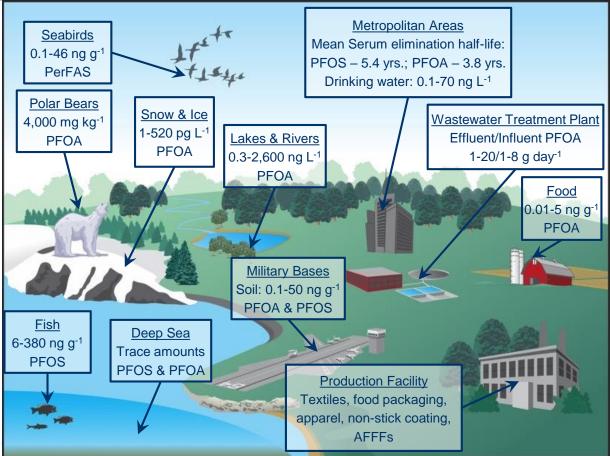
PFOS and PFOA in the Environment

PFOS and PFOA Distribution

Manufactured between 1950 and 2000

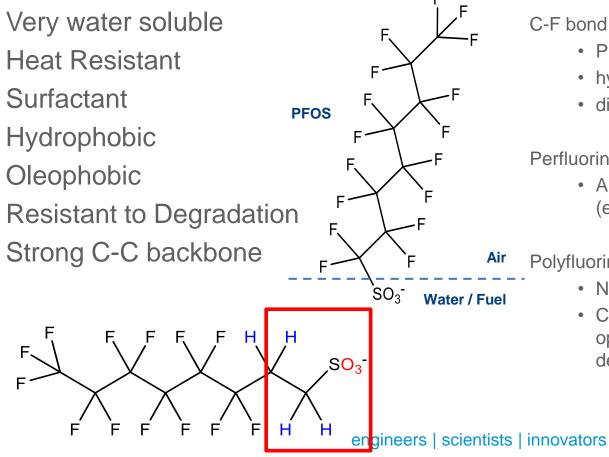
Fate and transport, not well understood

High potential to bioaccumulate


Health Effects

Probable carcinogen

Blood concentrations of PFOS and PFOA in the U.S. population exceed those reported from several other countries. (Olsen et al. 2003)


Concentrations of PFOS in blood of 2 – 12 year old children similar to concentration found in adults (Olsen et al. 2004)

PFOA, PFOS, and PFHxS persist in humans with half-lives of 3 - 8.5 years

Unique Chemistry¹

Geosyntec[>] consultants

C-F bond is shortest and strongest bond in nature

- Properties less predictable
- hydrophobic and oleophobic •
- difficult for microbes to break

Perfluorinated

 All carbons in chain bonded only to F (e.g., PFOS and PFOA)

Polyfluorinated

- Not all carbons in chain bonded to F
- CH2 linkages = 'weakness' in molecule,• open to chemical and biological degradation

¹Krafft and Riess, 2015. Chemosphere 129: 4-19 ²Buck et al., 2011. Integr Environ Assess Manage 7:513-541

Federal Regulatory Framework

- Safe Drinking Water Act (SDWA)
 - UCMR3
 - Health Advisory
 - Current USEPA Authority
- Comprehensive Environmental Response Compensation and Liability Act (CERCLA)
- Toxic Substances Control Act (TSCA)
- Emergency Planning and Community Right to Know Act (EPCRA)
- Resource Conservation and Recovery Act (RCRA)

PFOS and PFOA Regulatory Action

Geosyntec^D

EPA Drinking Water Health Advisory Level 70 ppt (total PFOA + PFOS)

Unregulated Contaminant Monitoring Rule 3 (UCMR3)

Published in 2012

Requires sampling from 2013 through 2015 by all public water systems (PWSs) serving >10,000 people

28 chemicals (6 PFCs): PFOS, PFOA, PFNA, PFHxS, PFHpA, PFBS

As of Jan. 2015:

- PFOS above PHA value in 12 / 3,605 PWS (0.3%)
- PFOS detected above PHA value in 15 / 22,942 samples
- PFOA not detected above PHA value

engineers | scientists | innovators

2010/2015 Stewardship Program

Minimize potential impact of PFOA on environment

Reduce facility emissions and product content of PFOA and related chemicals by 95% before 2010; eliminate by 2015

USEPA Science Advisory Board

PFOA is a likely human carcinogen, linked to two types of cancer in communities with drinking water exposure.

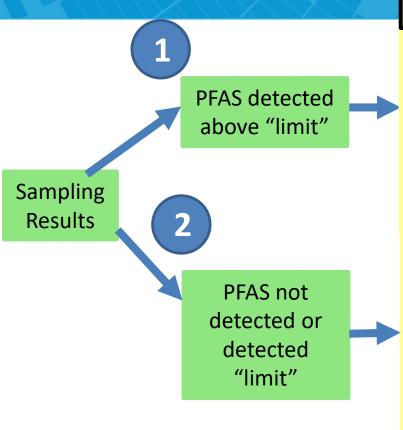
U.S. Navy Policy – October 2014

Identify all known and suspected sites where PFOS/PFOA may have been released

Sample all Navy water treatment systems by Dec. 2015

For Navy water treatment systems not under UCMR3, sample finished drinking water for PFOS/PFOA within 1 mile of an upgradient PFC source

State Regulations



	PFOS (µg/L)	PFOA (µg/L)	Promulgated
USEPA	0.07	0.07	Ν
AL	0.07	0.07	Ν
AZ	0.07	0.07	Ν
CO	0.07	0.07	Ν
DE	0.07	0.07	Ν
IA	0.07	0.07	Y
ME	0.07	0.07	Ν
MI	0.07	0.07	Y
NH	0.07	0.07	Y
PA	0.07	0.07	Ν
RI	0.07	0.07	Y
WV	0.07	0.07	Ν

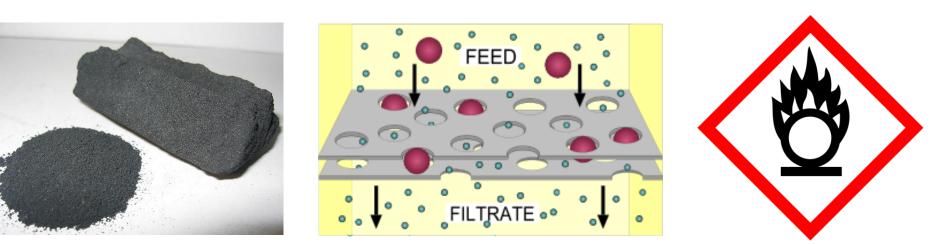
	PFOS (μg/L)	PFOA (µg/L)	Promulgated	
AK	0.40	0.40	Y	
NC		2	Y	
NV	0.667	0.667	N	HIGHER
ТХ	0.56	0.29	Y	
СТ	0.7 sum of	5 PFAS	Ν	
MA	0.7 sum of	5 PFAS	proposed	
MN	0.035	0.028	proposed	LOWER
NJ	0.013	0.014	proposed	
VT	0.02	0.02	Y	

Potential Outcomes

Geosyntec[▷]

Short Term

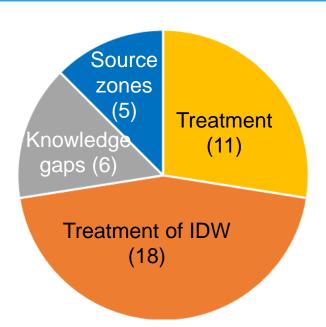
- Stop customer exposure (bottled water)
- Emergency system flushing and treatment
- Public outreach
- Develop management strategy for maintaining
 - concentrations below NJ MCL
- Inventory potential upgradient sources for future impacts


Long Term

- Identify sources
- Long term treatment or alternative supply
- Cost recovery
- Litigation management
- Regulatory tracking
- Evaluate source water and distribution system resilience
- Concentration monitoring
- Regulatory tracking

Remediation Considerations

- C-F bond is high energy and difficult to break
- Very stable at high temperature
- Typically do not hydrolyze, photolyze, or biodegrade
- Are extremely persistent in the environment
- Low temperature thermal not applicable
- High temperature thermal is expensive
- Low volatility soil vapor extraction and air sparging not applicable (could actually increase PFC concentrations) Advanced oxidation processes that rely on the OH radical do not work (e.g., hydrogen peroxide)


Remediation Options

No acceptable, cost-effective

in situ treatment available

GAC is only treatment method

currently in use at sites

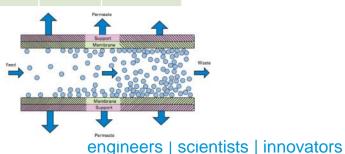
Geosyntec^o

consultants

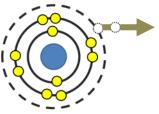
PFAS projects funded by SERDP/ESTCP in FY2018

Remediation Options

Geosyntec^D


Adsorption onto Granular Activated Carbon (GAC) and Ion Exchange

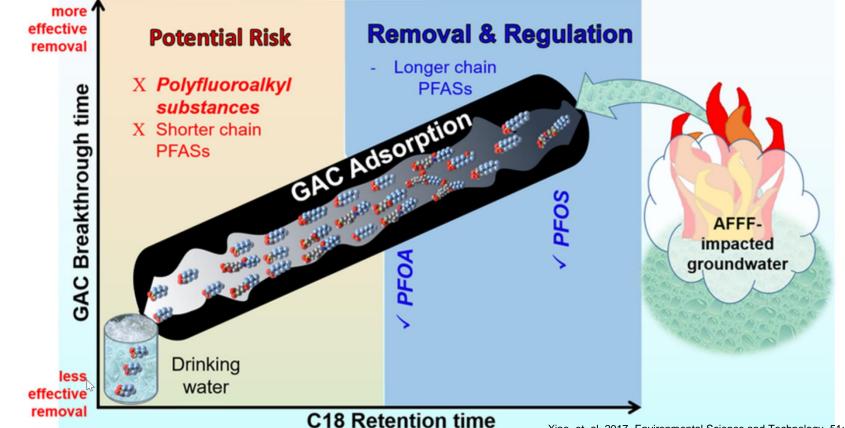
- Quick breakthrough for low C chain compounds (C4 and C6)
- Higher chains (C8) have slower breakthrough


Parameter	Charge	Annual GAC Costs (\$)			
	Capacity (% wt)	20 gpm	44 gpm	220 gpm	440 gpm
PFOS	0.002 to 0.005	3,932	7,865	39,322	78,643
CVOCs	0.02 to 0.4	256	512	2,555	5,112
BTEX	0.1 to 2.0	52	102	512	1,022
PAH	1.3 to 2.5	29	57	284	568

Membrane Filtration

Nanofiltration and reverse osmosis

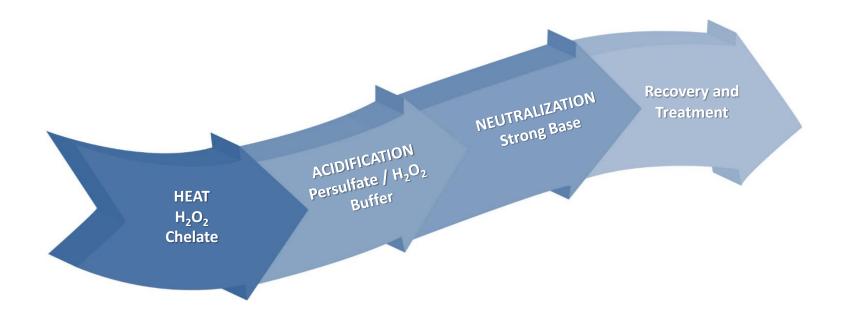
Oxidation with Persulfate, Sonolysis, and Electrolysis with Boron-Doped Diamond Electrodes



- Oxidation with persulfate, sonolysis, and electrolysis with borondoped diamond electrodes
- Not with hydroxyl radical, but with per radical
- Some laboratory studies; not yet demonstrated at field scale
- Heat-activated persulfate and permanganate, UV-activated persulfate, ultra sonification, electrochemical oxidation, catalyzed hydrogen peroxide

Source: Durant and Darlington, 2015

Remediation Challanges



Xiao, et. al. 2017. Environmental Science and Technology. 51: 6342-6351

Treatment Considerations

Focus to date has been on PFOS / PFOA, but what about all the other PFCs? Are we scratching the surface?

Replacements for PFOA went into production ten years ago and now are showing up in groundwater.

Municipal drinking water supplies – can they treat for PFAS down to 70 ppt?

Granular activated carbon (GAC) is only mature, demonstrated treatment technology.

Analysis for detection is expensive. How far should we look?

Widespread occurrence. Can we clean it up? Private drinking water systems?

engineers | scientists | innovators

Additional Issues for Consideration

1,4-Dioxane

1,4-Dioxane In the News

Study finds 1,4-dioxane in tap water in 45 US states

7 September 2017 / Solvents, United States

The solvent 1,4-dioxane was found in samples from tap water supplies in 45 states, according to a study commissioned by US NGO the Environmental Working Group (EWG). The report states that more than seven million people in 27 states are served by public water systems where the average level of the chemical is higher than the level the US Environmental Protection Agency (EPA) says poses an increased risk of cancer. FEBRUARY 11, 2017 | Albany, NY

Governor Cuomo Calls on EPA to Set Clear and Enforceable Drinking Water Standard for 1, 4-Dioxane

ENVIRONMENT

00

ENT PUBLIC SAFETY

New details about risk of 1,4dioxane in Cape Fear River

Published: Thursday, June 22nd 2017, 1:35 pm EDT Updated: Thursday, June 22nd 2017, 6:26 pm EDT

By: Ann McAdams, Investigative Reporter CONNECT

Researchers say chemical is being discharged from wastewater

SOUTHEASTERN NORTH CAROLINA (WECT) - We are learning about 1,4-dioxane, a second chemical found in the Brunswick Wilmington water supply that the Environmental Protection Agency says likely causes cancer.

Tammy Hill, a water quality analyst for the NC Department of Environmental Quality (DEQ) who focuses on 1,4-dioxane, say chemical has been in use for "a few decades."

Michigan Supreme Court rejects polluter's appeal in Ann Arbor dioxane case

Geosyntec^D

consultants

Updated Jan 17, 2018; Posted Jan 17, 2018

1,4 – Dioxane Occurrence

It's a stabilizer in chlorinated solvents

If you see 20 μ g/L of 1,4-dioxane, historical concentrations of 1,1,1-TCA were >250 μ g/L and more likely >1 mg/L

If you didn't observe this in the past or see higher concentrations of 1,4-dioxane, the source is likely something else

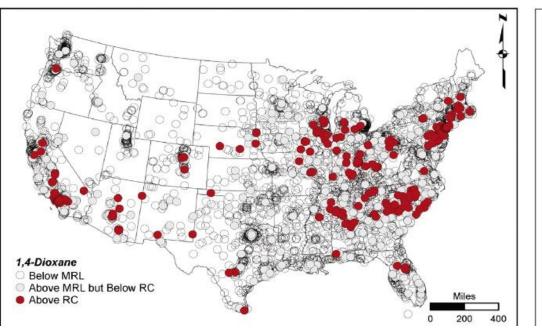
Solvent used for inks, adhesives, fats, waxes, cellulose esters, ethers, and resins

Manufacturing byproduct of surfactants, health care products, polyethylene terephthalate (PET plastics)

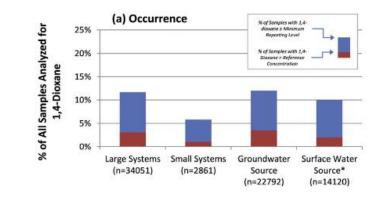
Derivative of ethylene oxide (acid or base catalyst)

Ethoxylation of alcohols (creating surfactants)

Esterification of glycol ethers


Dehydration of diethylene glycol (acid catalyst)

Heating ethylene glycol (ferric sulfate as catalyst)


1,4-Dioxane Occurrence in Public Water

1,4-Dioxane Occurrence in 4864 Public Water Systems Included in UCMR3

1,4-Dioxane detected in 21% of public water systems but detection rates declined over time

Concentrations exceeded health-based reference concentration (0.35 ug/L) at 6.9% of these systems

Adamson et al. (2017), Science of the Total Environment

1,4 – Dioxane Occurrence

Avoid the pitfall of assuming the source is associated with chlorinated solvents

Do the math

Verify the Conceptual Site Model is logical

Investigate all potential sources of 1,4-dioxane

Audit chemical processes

Evaluate process sewers and WWTPs

You can't effectively remediate if you haven't identified the source

Federal Regulatory Framework


No Federal MCL Included on drinking water contaminant candidate list Included in Third Unregulated Contaminant Monitoring Rule

10 ppm limit proposed for contraceptive sponge product; and glycerides and polyglycerides in dietary supplements

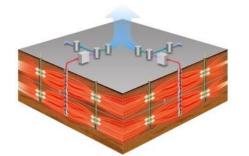
100 ppm limit in air averaged over an 8-hour work day

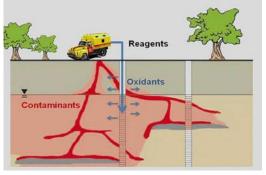
State Regulations

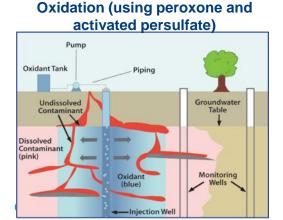
Notification level varies widely by state California: DHS notification level is 3 ppb

State	Guideline (µg/L)	Source
Alaska	77	AL DEC 2016
California	1.0	Cal/EPA 2011
Colorado	0.35	CDPHE 2017
Connecticut	3.0	CTDPH 2013
Delaware	6.0	DE DNR 1999
Florida	3.2	FDEP 2005
Indiana	7.8	IDEM 2015
Maine	4.0	MEDEP 2016
Massachusetts	0.3	MADEP 2004
Mississippi	6.09	MS DEQ 2002
New Hampshire	0.25	NH DES 2011
New Jersey	0.4	NJDEP 2015
North Carolina	3.0	NCDENR 2015
Pennsylvania	6.4	PADEP 2011
Texas	9.1	TCEQ 2016
Vermont	3.0	VTDEP 2016
Washington	0.438	WA ECY 2015
West Virginia	6.1	WV DEP 2009

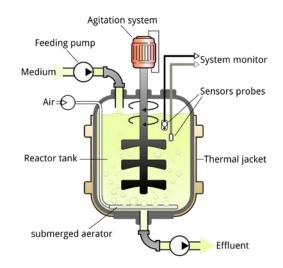
Source: EPA (2017)


1,4-Dioxane Treatment Options


Advanced Oxidation (using hydrogen peroxide with ultraviolet light or ozone)



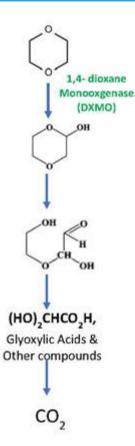
Electrical Resistance Heating



Chemical Oxidation and Bioaugmentation

Microbial Degradation in Bioreactors

1,4-Dioxane Treatment Options


treatability

studies.

HSiREM

Geosyntec[>]

consultants

1,4-Dioxane Treatment Options

Geosyntec[>] **SiREM**

consultants

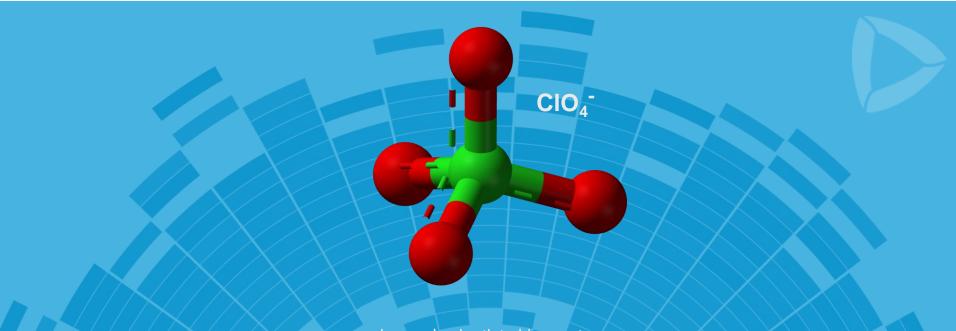
gene[§]trac[°]

SIREM technician programing robot used to assemble Gene-Trac® qPCR reactions

Contaminant Class	Redox	Gene-Trac [®] Test	Target	Relevance
1,4-Dioxane	Aerobic metabolism	Dioxan 1,4-dioxane monooxygo (<i>dxmb</i>		Energy yielding 1,4- dioxane degradation
		1,4-dioxane	Aldehyde dehydrogenase (ALDH)	Energy yielding 1,4- dioxane degradation
	Aerobic Co- metabolism	рММО	particulate Methane monooxygenase (pMMO)	Co-oxidation of 1,4- dioxane in presence of methane
		sMMO	soluble Methane monooxygenase (sMMO)	Co-oxidation of 1,4- dioxane
		PMO	Propane monooxygenase (PMO)	Co-oxidation of 1,4- dioxane in presence of propane

No Federal MCL yet

Additional Issues for Consideration 1,4-dioxane now showing up in certain surface water bodies


Still many chlorinated solvent sites where groundwater has not been analyzed for 1,4-dioxane

1,4-dioxane typically occurs as a co-contaminant at chlorinated solvent sites, especially 1,1,1-TCA degradation products

Some common treatment processes for chlorinated solvents do not treat 1,4-dioxane

Perchlorate

Perchlorate In the News

Geosyntec[>]

SUSTAINABILITY

Perchlorate in Drinking Water Raises Health Concerns

Besides its potential to cause endocrine system and reproductive problems, perchlorate is considered a "likely human carcinogen" by the EPA

CDC SCIENTISTS FIND ROCKET FUEL CHEMICAL IN INFANT FORMULA

Powdered Cow's Milk Formula Contains Thyroid Toxin

POLITICO What broke the Safe Drinking Water Act?

ANNIE SNIDER | 05/10/2017 04:49 AM EDT | Updated 05/11/2017 05:02 PM ED

California moves forward to limit toxic perchlorate contamination -EPA still overdue

Mav 10. 2017

Perchlorate - Overview

- Highly soluble in water, stable in subsurface systems
- Naturally occurring and man-made anion
- Used by DOD since 1940, 90% of domestically produced perchlorate used in defense industries – primarily ammonium perchlorate
- Bioaccumulates in food
- In humans, inhibits iodide uptake, disrupts thyroid gland functions
- EPA Method 314 or SW-846 6850, Stable Isotopes

Perchlorate - Overview

Property	Ammonium Perchlorate	Sodium Perchlorate	Potassium Perchlorate	Perchloric Acid
Chemical Abstracts Service (CAS) Numbers	7790-98-9	7601-89-0	7778-74-7	7601-90-3
Physical Description (physical state at room temperature)	White orthorhombic crystal	White orthorhombic deliquescent crystal	Colorless orthorhombic crystal or white crystalline powder	Colorless, oily liquid
Molecular weight (g/mol)	117.49	122.44	138.55	100.47
Water solubility (g/L at 25°C)	200	2,096	15	Miscible in cold water
Melting / Boiling point* (°C)	Melting Point: > 200 (Decomposes)	Melting Point: 471 to 482	Melting Point: 400 to 525	Melting Point: -112 Boiling Point: 19
Vapor pressure at 25°C (mm Hg)	Very low	Very low	Very low	6.8
Specific gravity (g/cm ³)	1.95	2.52	2.53	1.77
Octanol-water partition coefficient (log K _{ow})	-5.84	-7.18	-7.18	-4.63

*Different melting point temperatures are identified in literature.

Abbreviations: g/mol – grams per mole; g/L – grams per liter; °C – degrees Celsius; mm Hg – millimeters of mercury; g/cm³ – grams per cubic centimeter.

Source: https://www.epa.gov/sites/production/files/2014-03/documents/ffrrofactsheet_contaminant_perchlorate_january2014_final.pdf

Perchlorate Occurrence in Public Water

Perchlorate Detected in Drinking Water (2004) Perchlorate Detections in California Wells (2004) 4500 3732 4000 Detections 171 Detections less than 4 ug/L 3500 427 Detections greater than 44 ug/L 3000 2500 Ъ 2000 2 1443 Number 1500 756 1000 313 500 72 n 4-8 8-12 12-16 16-20 20-24 24-28 28-32 32-36 36-40 40-44 Perchlorate Concentration (ug/L) Detection Level 1 μ g/L to 4 μ g/L

American Water Works Association (2005)

American Water Works Association (2005)

Geosyntec^o

consultants

- > 4% of public water systems have detected perchlorate
- Between 5.2 and 16.6 million people who may be EPA (2011) served drinking water containing perchlorate

Federal Regulatory Framework

Geosyntec^D consultants

EPA Drinking Water Health Advisory Level = 15 ppb

2009 Established reference dose recommended by the NRC

2012 initiated regulations under the Safe Drinking Water Act

2013 Soil Residential Screening level of 55 ppm Industrial soil screening level of 750 ppm

National Research Council (NRC) of the National Academy of Sciences (NAS)

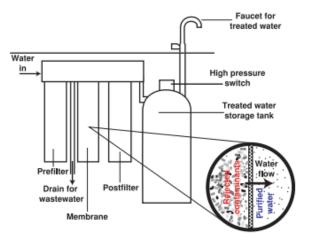
In 2005, recommended reference dose for children and pregnant women of < 24.5 ppb

Department of Homeland Security - Chemical Security

Ammonium and Potassium Perchlorate are chemicals of interest

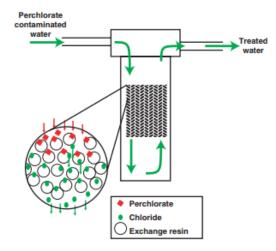
State Regulations

Regulatory Action	State / Agency	Perchlorate (µg/L)
Drinking Mator Standards	MA (as of 2006)	2
Drinking Water Standards	CA (as of 2007)	6
Non-Enforceable Guidance, Action or Advisory Levels	At Least 10 States	1 to 18 μg/L for Drinking Water & 1 to 72 μg/L for Groundwater
Drinking Water Equivalent Level	NRC of NAS (as of 2005)	24.5
Interim Health Advisory Level	EPA (as of 2009)	15
Level of Concern	DOD (as of 2006)	24



TX required Navy to reduce perchlorate levels in wastewater discharges to 4 $\mu g/L$ (TX's Action Level)

Perchlorate Treatment Options – Ex Situ



Reverse Osmosis

Under-sink systems and whole-house/business purification systems can provide about 95% rejection

For extremely high levels, a specialty ion exchange polishing filter might be required to achieve very low levels **Anion Exchange**

Use specialty anion exchange resins with very strong affinities to the perchlorate ion

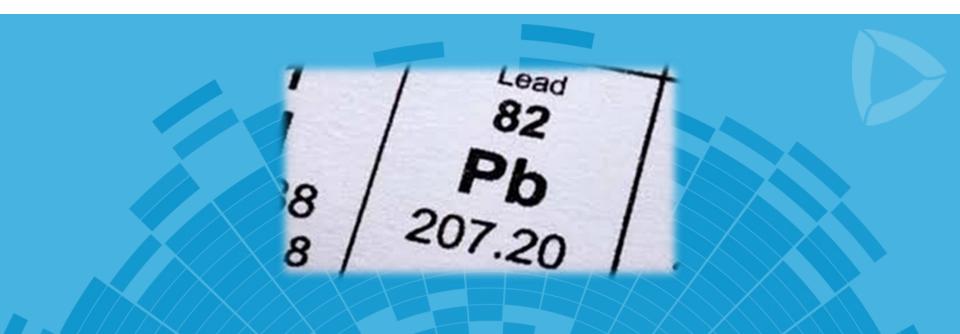
Systems can be used on a disposable basis, or they can be regenerated for a longer service life

Agricultural Communications, The Texas A&M University System (2005)

Perchlorate Treatment Options – In Situ

No Federal MCL

Additional Issues for Consideration


Naturally-occurring chemical in fertilizers

Found in vegetables (lettuce), breast milk, and Chilean wine (!)

Perchlorate is fairly ubiquitous

Lead

Lead In the News

Geosyntec^o consultants

Pittsburgh Post-Gazette

6:56 AM

-	1
	5
	8

ADAM SMELTZ Pittsburgh Post-Gazette smeltz@post-gazette.com 🔰 APR 2, 2018

Pittsburgh isn't the only Alleghenv County municipality facing a state alert over lead-contaminated water.

alth » Lead found in hundreds of Chicago homes' tap water, report says

Live TV . U.S.

engineers | scientists | innovators

Lead found in hundreds of Chicago homes' tap water, report says

By Jacqueline Howard, CNN © Updated 9:37 PM ET, Thu April 12 April 12, 2018

Nov 8, 2017 The 'Horrifying' **Consequence of Lead** Poisoning

Exposure to the toxin leads to higher risk of miscarriages, new research finds, in addition to other long-lasting effects.

OLGA KHAZAN NOV 8, 2017 HEALTH

Lead Federal Action

Air

- 1970 Clean Air Act
- One of 6 hazardous pollutants regulated by the national ambient air quality standards (NAAQS)
 - · Set emissions standards for industrial facilities
 - 2007 standard became 10x more strict

Soils and Waste

• Addressed by RCRA, CERCLA, Superfund, Brownfields, hazardous waste program, and other EPA programs

- 1972 Clean Water Act
- 1974 Safe Drinking Water Act
 - 1991 Lead and Copper Rule: Establishes action level (AL) of 0.015 mg/L for Pb and 1.3 mg/L for Cu based on 90th percentile level of tap water samples.

Lead-Based Paint

- 1976 Toxic Substance Control Act
- 1992 Residential Lead-Based Paint Hazard Reduction Act
 - · Allows disposal of lead-based paint as household waste

Lead Occurrence in Public Water

EPA study found over **6 million people and 2,000 water systems** with excessive lead levels in drinking water over a 4 year span

Over the next decade, local governments will spend an estimated **\$300 billion** on upgrading water and sewer pipes

In 2020, average age of water pipes will be 45 years

Bluefield Research (2017)

USA TODAY (2016) analysis of EPA's Safe Drinking Water Information System database

Treatment and Challenges

Replacing service lines and private pipe will take decades – Other technologies can be used now!

Inorganic Phosphates (e.g., phosphoric acid, zinc phosphate, and sodium phosphate)

- Commonly added to water by municipalities
- Forms insoluble mineral scale on the inside of service lines and private pipe
- Scale protects pipes from corrosive elements in water
- <u>Challenge</u>: Requires maintaining pH and orthophosphate levels throughout the system

Phosphates are common food additives that are
 "generally recognized as safe" by the FDA

A person would have to drink 10 – 15 L of tap water dosed with phosphates to consume the amount in just 1 can of soda

engineers | scientists | innovators

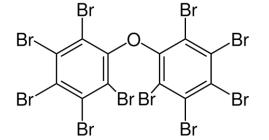
Bluefield Research (2017)

Additional Issues for Consideration

Exposure routes to lead are in air, soil, and water.

Drinking water = daunting infrastructure problem

Aging infrastructure = additional problems


Drinking water = treatment requires attention

What is Next ?

Organohalogen Flame Retardants

Example: Decabromodiphenyl ether

Pharmaceuticals and Personal Care Products

Example: Oxybenzone